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Abstract. We compute numerically the time dependent retarded Green function of the polaron within
the self-consistent RPA approximation. The results show an approximately Gaussian behaviour at t = 0
changing at later times its concavity to an exponential decay, as it has been predicted in the approximate
form of an inverse hyperbolic cosine function. The result contrasts with the non-selfconsistent RPA, where
the exponential decay is only a transitory behaviour and the asymptotics is rather oscillatory. Our conclu-
sions are significant in the context of the quantum kinetics with LO-phonons, where the transition from
an intitially coherent scattering kinetics to a Markov kinetics with energy conservation is controlled by the
time behaviour of the retarded Green function.

PACS. 78 Optical properties, condensed-matter spectroscopy and other interactions of radiation and
particles with condensed matter – 71.38.+i Polarons and electron-phonon interactions

In the quantum-kinetic theory of the population and
polarization dynamics in semiconductors excited by ultra-
short laser pulses (see Ref. [1] for a modern review) the
memory kernel of the delayed scattering kinetics plays a
central role.

For not too strong laser pulses this kernel is given
by a product of retarded equilibrium one-particle Green
functions. If the interaction of the electrons with the dis-
persionless LO-phonons provides the dominant scattering
mechanism, the decay in time of these Green functions is
the only mechanism, that ensures asymptotically an ap-
proximate locality in time and implicitely irreversibility,
i.e., the familiar Markov structure of the semiclassical ki-
netics. In order to improve the dissipative behaviour of
the retarded Green function we limit ourselves like in our
previous paper [2] to a one-band polaron problem.

Often the Wigner-Weisskopf approximation for the re-
tarded Green functions is used, which consists of the free-
particle Green function corrected with an exponential de-
cay factor, which is determined by the golden rule [3]

Grk (t) =
1

i~
θ(t)e−i

εkt

~ e−γt.

This approximation leads in the Markov regime to a Lo-
rentzian broadening of the energy conservation, which is
not acceptable, because wide wings of this resonance func-
tion lead to run-away effects in the long-time relaxation
kinetics. Therefore it is crucial to improve the approxima-
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tion through a better knowledge of the time-behaviour of
the Green functions.

As it has been shown in reference [2], the short-time be-
haviour of the retarded Green functions plays the decisive
role. This is a simple consequence of the correspondence of
the short times to large energies after Fourier transforma-
tion. The fact that the short-time behaviour has nothing
to do with the long-time exponential decay stays at the
origin of the relatively sharp energy conservation in the
Markov regime. By interpolating the short-time and long-
time asymptotics, we derived a simple damping law, which
replaces the exponential decay by 1/coshα (ω0t), where
ω0 is the LO-phonon frequency and α is the dimension-
less Fröhlich constant. This form of the damping has been
shown to improve the energy conservation in the long time
limit essentially [2]. In this work we solve numerically the
Dyson equation to illustrate this behaviour.

Let us consider the electron-LO-phonon interaction

Hint =
∑
q

gqa
+
k ak−q(bq + b+

−q) (1)

with the Fröhlich coupling

g2
q = α

4π~ (~ω0)3/2

(2m)
1/2

q2V
;

α =
e2

~

(
m

2~ω0

)1/2(
1

ε∞
−

1

ε0

)
. (2)
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where ω0 is the dispersionless LO-phonon energy, m is the
electron effective mass and ε0, ε∞ are the static and high
frequency dielectric constants respectively.

The Boltzmann form of the collision term of the elec-
tron population fk(t) due to emission or absorption of
longitudinal optical phonons then has the structure

∂fk(t)

∂t

∣∣∣∣Boltzmann

coll

=

= −
∑
q,±

Wk,q,±fk(t)(1− fk−q(t))N
±
q (t) · · · , (3)

whereN+
q (t) = Nq(t)+1, N−q (t) = Nq(t) are the phonon

population factors. For simplicity we assume that
the phonons are in thermal equilibrium, i.e. Nq ≡ N =
1/(eβ~ω0−1). ω0 is the frequency of the LO-phonons. The
energy conserving transition probability per unit time is
given by

Wk,q,± =
2π

~
g2
qδ(ek ∓ ~ω0 − ek−q) . (4)

In the quantum-kinetic version of the theory, this Markov
structure of the collision term has to be replaced by a
memory integral

∂fk(t)

∂t

∣∣∣∣QK

coll

−
∑
q,±

Re

∫ t

−∞
dt′Kk,q,±(t− t′)

× fk(t′)(1− fk−q(t
′))N±q (t′) · · · , (5)

where the memory kernel is given by

Kk,q,±(t− t′) = g2
qG

r
k(t− t′)Ga

k−q(t
′ − t)e±iω0(t−t′), (6)

here Gr,a are the retarded and advanced electron Green
functions, respectively.

The Dyson equation for the retarded Green function,
e.g., is

(i~
∂

∂t
− εk)Gr

k (t)−

∫ t

0

dt′Σr(t− t′,k)Gr
k (t′) = δ(t). (7)

After a simple transformation

Gr
k (t) =

1

i~
Gk(t)θ(t)e−i

εkt

~ (8)

we get

∂

∂t
Gk(t) =

1

i~

∫ t

0

dt′eiεk
(t−t′)
~ Σr(t− t′,k)Gk(t′);

Gk(0) = 1. (9)

Since in the polaron theory (electron vacuum) no elec-
tronic loops are possible, the self-energy can be expressed
again through the retarded Green function. Ignoring ver-
tex corrections we have (with the Keldysh diagram tech-
nique) the following self-consistent expression for the self-
energy:

Σr(t,k) =
1

i~
∑
q

g2
q

[
(N + 1)e−iω0t +Neiω0t

]
× e−i

εk−qt

~ Gk−q(t)θ(t) (10)
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Fig. 1. Absolute value of the s.c. retarded Green-function for
α = 0.1
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Fig. 2. Absolute value of the s.c. retarded Green-function for
α = 1

with
Gk(0) = 1. (11)

If the self-energy Σr vanishes sufficiently rapidly as
t→∞, then

∂

∂t
Gk(t) ≈ Gk(t)

1

i~

∫ t

0

dt′ei
εk(t−t′)

~ Σr(t− t′,k)

≈ Gk(t)
1

i~
Σ̃r(εk), (12)

where

Σ̃r(εk) =

∫ ∞
0

dt ei
εkt

~ Σr(t). (13)

Consequently one gets an asymptotic behaviour

Gk(t) ∼ exp(it
δεk + i~γk

~
). (14)

To lowest order in the coupling constant

γk =
π

~
∑
ζ=±1

∑
q

g2
qNξδ(εk − εk−q − ξ~ω0) (15)

which corresponds to the “golden rule”.
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Fig. 3. Absolute value of the non-s.c. retarded Green-function
for α = 1
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Fig. 4. Different large-time behaviours of the s.c. (full line)
and non s.c. retarded (dotted line). Green-functions for α = 1
and E = 3~ω0 The dashed line represent an asymptotical fit
with 1.49 e−1.26αω0t.

On the other hand, one sees from the Dyson equation,
that for t→ 0

∂

∂t
Gk(t)→ 0. (16)

Therefore we have two rather different behaviours at t→ 0
and t→∞.

In what follows we shall study this transition between
the two asymptotic regimes through the numerical so-
lution of the Dyson equation (9) for different coupling
strengths both in the self-consistent (s.c.) as well as non
self-consistent (n.s.c.) versions. Our numerical solutions
were obtained with phonons characterized by ~ω0 =
36 meV at room temperature (kBT = 26 meV) and an
electron energy cut-off of 6~ω0.

The approximation method we used to solve the non-
linear and non-local system of equations (9) is its dis-
cretization in time and energy. Of course we took advan-
tage of the isotropy of the problem, which ensures, that the
Green functions depend actually only on |k| and therefore
on the energy. The mesh was refined until a good conver-
gence has been achieved.
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Fig. 5. Absolute value of the s.c. retarded Green-function
for α = 0.1 and E = 3~ω0 and an asymptotical fit with
1.01 exp(−1.056αω0t) (dashed line)
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Fig. 6. A simple analytic approximation for the absolute value
of the retarded Green functions for α = 1 (lower curve) and
α = 0.1 (upper curve)

For a weak coupling α = 0.1 the absolute value of
the s.c. retarded Green function is shown in Figure 1. A
rescaled time variable t

√
αω0 is used in order to repre-

sent results for different couplings on the same time-scale.
One sees the flat start at t = 0 and also the asymp-
totic exponential decay, which is well described by the
“golden rule”. Below the one-LO-phonon threshold the
decay is very slow, but otherwise almost constant. The
self-consistency brings only very small corrections.

At an intermediate coupling of α = 1 (see Fig. 2),
one has a specific Gaussian-like shape i.e. the function
first drops strongly and is concave and only later enters
the exponential decay regime. Here, and even more so
at still larger values of the coupling strength, the Gaus-
sian decay dominates and leads to the typical Gaussian
strong-coupling line-shape [4]. For the α = 1 coupling
strength, one sees already a significant deviation compared
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Fig. 7. Unperturbed phase (full line) and phase correctures of
the s.c. retarded Green function for α = 1 (dashed line) and
for α = 0.1 (dotted line) at E = 3~ω0
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Fig. 8. Laplace-Fourier transform of the squared absolute
value of the s.c. Green function for α = 1 (solid line) and
Lorentzian behaviour (dashed line). The insert represents the
same curves on a logarithmic scale.

to the n.s.c. calculation (see Fig. 3). First at all, one sees
a smearing out of the LO-phonon threshold, which any-
way could have been expected. On the other hand, a much
more important difference is seen particularly above the
LO-phonon threshold: The n.s.c. Green function drops like
the s.c. one up to the time

√
(α)tω0 = 1.5, but increases

again for later times.

We conclude, that in the n.s.c. version the self-energy
Σr does not vanishes sufficiently rapidly for t→∞, as it
has been assumed in the derivation of the asymptotic ex-
ponential decay law! On the contrary, the s.c. self-energy
seems to satisfy the criterion very well. The important dif-
ference between the large-time behaviour of the s.c. and
non-s.c. Green functions can be better seen at a fixed en-
ergy (3~ω0) at α = 1 shown in Figure 4.

In the same figure one sees, that the asymptotic be-
haviour of the s.c. Green function is nearly exponential.

At this energy with phonons at room temperature (kBT =
26 meV) one would expect from the “golden rule” a be-
haviour like exp(−1.1 tαω0) whereas the asymptotic be-
haviour of the s.c. solution at α = 1 shows a slightly more
rapid decay like exp(−1.26 αω0t). For the weak coupling
α = 0.1 the s.c. Green function (see Fig. 5) also decays
exponentially, but (within numerical accuracy) exactly ac-
cording the “golden rule”.

The calculated time dependence of the retarded Green
function is roughly speaking the same as it has been pre-
dicted within a simple inverse hyperbolic cosine approxi-
mation approximation in our previous paper [2]. Indeed as
it might be seen from Figure 6, the curves of the s.c. Green
functions of Figures 4, 5 are well described as 1/coshα(ω0t).
Naturally this qualitative analytic approximation has no
momentum dispersion, but connects the two asymptotic
regimes very much like the numerical s.c. solutions. In a
way the time evolution from a Gaussian short-time regime
to an exponential long-time regime reminds one of the
Toyozawa’s concept of motional narrowing [4] in frequency
space, which is obtained if the average kinetic energy in-
creases in comparison with the average potential energy.

The relatively small time-dependent corrections to the
phase φ of the Green function (defined as G = |G|eiφ) for
the two coupling values are shown in Figure 7. In the same
figure also the unperturbed phase εkt

~ is shown by the full
curve.

In the frame of the quantum kinetics the Laplace-
Fourier transform

<

∫ ∞
0

dtGr
k (t)Gr

k′ (t)
∗

eiω0t (17)

is of special interest, since in the Markov limit it defines
the energy conservation.

Because the phase correction of the Green function
is relatively small and the k-dependence of the absolute
value of the Green function again is very weak, we shall
represent in Figures 8, 9 only

<

∫ ∞
0

dt|Gr
k (t) |2eiωt (18)

for the energy E = 3~ω0. One sees from the numerical
curves, that indeed the Fourier transform of the squared
modulus of the retarded Green function decays in energy
much faster than a Lorentzian corresponding to the purely
exponential decay of the Wigner-Weisskopf approxima-
tion. Even if in the weak coupling case this difference is
seen only on a logarithmic scale it is of major importance,
since in the collision term it intervenes under an integral
and its asymptotic behaviour is very crucial.

To conclude, we have shown through numerical calcu-
lations, that the time-dependent retarded polaron Green
function has both an exponential decay at infinity as well
as a Gaussian behaviour around the origin. The first prop-
erty is not shared by the simple RPA approximation. On
the other hand, both these properties are essential in or-
der to get an acceptable Markov behaviour in the slow
asymptotic regime.
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Fig. 9. Laplace-Fourier transform of the squared absolute
value of the s.c. Green function for α = 0.1 (solid line) and
Lorentzian behaviour (dashed line) on logarithmic scale

It is interesting to remark, that in an exactly solv-
able one-dimensional (1D) electron model coupled to LO-
phonons qualitatively similar results have been obtained
[5]. This model emerges after a linearization of an 1D elec-
tron spectrum around the Fermi level (εk = vFk). The
resulting Green function at T = 0 is

Gk(t) = eiεkt−F (t).

For a LO-phonon coupling with a momentum cut-off
qc

gq = gvFqc/
√
q2 + (vFqc)2,

one finds (for t > 0 )

F (t) = g2πqc
1 + i(ivFqc − ω0)t− e−(iω0+vFqc)t

(ivFqc − ω0)2
.

For any finite cut-off qc, the absolute value of this Green
function behaves as a Gaussian around t = 0, while at
t→∞ it decays exponentially.
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